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Abstract. A special quaternion representation is constructed for a pair of relativistic vectors 
and skew-symmetric tensors an the basis of the group theory of Lorentz transformations. 
The construction has considerable advantages over the conventional vector-tensor descrip- 
tion. It is pointed out that pairs of Minkowski vectors as well as ceRain scalars and 
skew-symmetric tensors can also be interpreted as simple components of more complex 
physical quantities, each of them expressed by a single quaternion. As an example a concise 
relativistic quaternion formulation of Maxwell’s electrodynamics is presented. The relativis- 
tic covariance can be maintained even for the existence of magnetic monopoles. 

1. Introduction 

Though in his ‘Treatise’ J C Maxwell applied three-dimensional ( 3 ~ )  vector representa- 
tion to formulate electrodynamics, he also mentioned a possible 3~ quaternion applica- 
tion to describe vectors [I] .  This application utilized the fact that both scalar and 
vector products of 3~ vectors automatically appear in the quaternion products. Since 
neither the concept nor the significance of the relativistic covariance was realized at 
that, Maxwell used the VQ symbol to refer to the ‘vector part’ of the quaternion Q, 
while SQ referred to the ‘scalar part’ of 0. Since this notation does not provide plausible 
advantages over the 3~ vector formulation from the classical point of view, quaternions 
faded into oblivion for physicists. While their renaissance began with quantum theory 
in the form of Pauli‘s spinormatrices or related to more general considerations in 
quantum physics [2,3], technical applications seem only to have spread in our time [4]. 

In robotics, the convenient behaviour of quaternions for O(3)’ transformations is 
utilized to describe kinematic structure and to compute rotations of robots’ arms [5]. 
Analysis of the cause of the main computational benefits lead us to investigate the 
possibilities of the quaternion representation of the Lorentz group. Based on the fact 
that the 0 ( 3 ) +  group is a subgroup of the relativistic Lorentz group, this representation 
is successfully generalized to the whole continuous Lorentz group. In contrast to the 
more general approach published in [2] and [3], we considered a power series formula- 
tion of the most general transformations generated by a ‘mixture’ of pure 0 ( 3 ) +  and 
pure Lorentzian generators. 

The main benefits of the proposed method can be found in a closed analytic 
formulation of arbitrary Lorentz transformations of arbitrary pairs of Minkowski 
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vectors, general skew-symmetric and special symmetric tensors. Instead, quaternionic 
power series formulae contain the simple complex functions sinh 2 and cosh z, which 
can be easily computed. 

From the educational point of view it is quite interesting that strict inner correspon- 
dence can be found between relativistic electrodynamics and the quaternion representa- 
tion. Each traditionally used equation can be obtained as a result of plausible algebraic 
manipulations with quaternions. 

2. Quaternion representation for the Lorentz group 

Using special units, i.e. c = 1 for the velocity of light in uacuo, the covariant representa- 
tion of the metric tensor of the Minkowski space can be written as 

g .  = 1 

g,=-1 (2.1) 

g.. = 0 otherwise. 

The Lorentz matrices L of the xi = ~j.x'  transformation for contravariant 4~ relativistic 
vectors can be expressed as exponential series in which the exponents are linear 
combinations of the generators {U', V'I i = 1 ,2 ,3}  of this Lie group. The skew- 
symmetric 4 x  4 matrices U' generate the whole subgroup 0 ( 3 ) + ,  while the symmetric 
matrices Vi generate pure Lorentz transformations. The generators obey the commuta- 
tion rules 

for i = j  = 1 , 2 , 3  

[U' ,  UJ] = U"&., [ v', VJ] = - U"&", [U' ,  v J l =  vuE "'I .. (2.2) 

where E., is the Levi-Civiti symbol. The quantemion representation of the group will 
be constructed via the representation of this Lie algebra. In this representation the 
quaternions serve as a complex 4~ linear vector space. Introducing the multiplication 
rules by the relations 

K U K ~  = K ' K O =  K !  

K'K' = -IS,+ K"E.,  ( i  = 1 , 2 , 3 )  (2.3) 

( d ) ( B f ' )  := (aP)(Qf') 

K O K O  = K O -  I 

where a, p are arbitrary complex numbers, quaternions also form an algebraic structure. 
In order to find an appropriate representation for (2.2) we decompose this complex 
4~ linear vector space into a real ED linear space on the fo~~owing basis: 

{ I ,  K ' ,  H o =  J := i1, HJ := iK') (2.4) 

where i denotes the imaginary unit. It is easy to see that there is more than one 
possibility to represent (2.2) by the use of quatemions. For instance, the representations 

U ! +  D( U'):=&' v ' - , ~ ( v ' ) : = f ~ '  (2.5) 

U L  D( U ' )  := f[ K ' ,  .] (2.6) 

U;-,  D( U ' )  := + [ K ' ,  . ] (2.7) 

equally satisfy the laws of the Lie algebra (2.2). (Here the symbol [.;I denotes 
commutators while {. , .} corresponds to anticommutators.) Using one of the equations 

v' + D( v;) := f [ ~ ' ,  . I  
V +  D( v') : = f ( ~ ' ,  .} 
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(2.5)-(2.7), with arbitrary real numbers a, and b,, the quaternion representation of the 
Lorentz matrices L can be defined as 

(2.8) 

Due to the same structure of the exponentials this representation has the feature 
D( QP) = D( Q)D( P), i.e. it serves as a correct representation of the Lorentz group. 
According to the rules in (2.3), it is easy to express the exponentials pertaining to 
(2.5). Introducingthecomplexes(aj:=aj+ibjlj=1,2,3}andthegenerators G:=a;K' ,  
we get 

D[exp(a,U" + b,V')] := exp[a,D(U') + b,D( V)]. 

GO:= I G2=a ,a jK 'K'=  a,aj(-IS,+K"&..I)=-Iaiai:= p I  
(2.9) 

GJ=(JB)JG/(fl) ~ 4 = ( 4 9 ~ 1  .... 

exp(fsajK') = c o s h ( f s 4 ) I  +s inh ( f sG) (a , / f i )K  '. 
Hence for an arbitrary real group parameter 's' we have 

(2.10) 

We note that a unique branching cut on the complex plane must be defined for @ 
in order to get correct results. For the special case bi = 0 when 4 is purely imaginary 
we obtain the usual quaternion representation of the 0 ( 3 ) +  group. For @ = i  it 
corresponds to 's', given in radians, describing an 0 ( 3 ) +  rotation around the unit 
vector axis e, := iaJfi,  and 

Q(s, e )  = cos(fs)l+ e; sin(fs)K'. 

Q(s, e)=cosh(fs)I+isinh(fs)e.K". (2.12) 

(2.11) 

For the special case of pure Lorentz transformations a; = 0, (2.10) gives 

Here e,:= b,/* corresponds to the direction of the relative velocity of the frames 
connected by the transformation L, while s serves as the velocity parameter. Now we 
consider the representation given in (2.7). For an arbitrary quaternion Q the most 
general generator G has the effect 

CQ = f a , [ K ' ,  Q]+fib;{ K', Q) = f (  ai +ibi)K'Q -+Q(n( -ib;)K' := $(zQ- Qr*) 

Considering the powers CO, Cl, G2,  G' we get 

Cog := IQ c ' Q = ~ ( ~ Q -  QZ*) 

c2Q=! t )2! . 'O-2roz*+Q~*2)  

CJQ = ( ~ ) ' ( z ~ Q - ~ z ~ Q z * + ~ z Q z * ~ -  Qz*') 

where the members of the binomial series can be recognized in the role of the 
coefficients. Therefore the nth term in the power series of exp( Cs)  has the form 

C"Q/(n!)= I: r"Q(-z*)"-"/[m!(n -m)!]. (2.14) 
" - 0  

Summing up (2.14) for n :O+m and rearranging the terms in the series we can find 

exp(sC)Q=exp(fsr)Q exp(-fsz*). (2.15) 
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3. Quaternion representation of vectors and tensors 

Considering the infinitesimal transformation d L  for an arbitrary contravariant 4D vector 
we get 

(3.1) 

Let x = [r, xo], y = [y, yo] be two contravariant 4D vectors. These two independent 
vectors can easily be represented by the quaternion 

(3.2) 

(The 'con' subscript refers to the word 'contravariant'.) Calcultating the quaternion 
representation dq := d s  Cq for (3.1) we get 

d L x  =ds(a,U" + b,Vm)[r, t] = ds[o x r +  bt, br]. 

qcom := ( xo - iyo)Ka + (ir, + y5) K'. 

dx, = ds br 

dx = ds(o x r+xob) 

dy, = d s  by 

du =ds (a  xy+y,b). 
(3.3) 

This means, that (3.2) is a quaternion representation of two independent contravariant 
4~ Minkowski vectors with the tranformation law of 

qLn =exp(fsz)q,,. exp(-fsz*). (3.4) 

Considering now the transformation law for the covariant components xi:= g&, 
according to (2.1), the appropriate quaternion representation is 

qco,,:= (-xo+iyo)Ko+ (ir, +ys)Ks. (3.5) 

The appropriate transformation law can be obtained from (3.3) taking b+-b, i.e. 

qLoV= exp(fsz*)q,,, exp(-fsz). (3.6) 

Let R,,, and Q,,, be representations for two covariant and two contravariant 
Minkowski vectors respectively. The transformation laws for the products RcovQcon 
and Q,,.R,,, tum out to be 

RLoVQLon = exp(fsz*)R,,, exp(-fsr) exp(fsz)Q,,. exp(-fsr*) 

= exp(fsz*)R,,,Q,,. exp(-fsz*) 

and 

Q6..RL,, = exp(fsz)Q,,. exp(-fsz*) exp(fsz*)R,., exp(-fsz) 

= exp(fsz)Q,,.R,,, exp( -fsz). (3.7) 

In order to calculate the components of (3.7) we rewrite (3.2) as 

(x, - iy,) KO + (ir, + ys) K' = x,I + ir,K - i(y,+ iy,K ') = x - iy. (3.8) 

Therefore, (3.7) can be written as a composition of rather simple terms: 

(Acon - i ( Ccov - i Dc0J = Aeon Go, - B,,, D,,, - i (Acon Dcov + &on GJ. (3.9) 

For the simple A,,.C,,, term we get 

(AoI + iAsK')(-CoI + iC.K ") 

= ( -A,C,+A,C,)I +i(A,C, - C,A,)K' - Ks~sU, ,AUCw.  (3.10) 
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The scalar part of (3.10) corresponds to the scalar product (A, C )  while the other parts 
are equal to  the six independent components of the antisymmetrized direct product 
A . C - C . A  tensor. Therefore each component in (3.9) can be easily interpreted. 
Furthermore, the given transformation laws guarantee that appropriate relativistically 
covariant quaternion products can be constructed: a (scalar+tensor) * (scalar + tensor) 
product transforms as ( scalar+ tensor) quaternion, while the vector* (scalar+ tensor) 
product transforms a5 a vector quaternion. It is also clear from (3.10) that there is a 
general possibility to represent antisymmetric tensors as quaternions. We note that no 
general way exists to to represent arbitrary symmetric tensors with quaternions. 

4. Some remarks on the possible ease of computation 

In this section we intend to show a well-defined special case in which the use of 
quaternions can afford considerable ease: computation of the result of numerous 
consecutive 0(3)+ rotations. Such a situation is typical in robotics where the different 
arm sections rotating with respect to each other form a kinetic chain. This case may 
also have some relativistic interest. Since the rotating sections correspond to non-inertial 
frames, their ‘absolute rotation’ can be detected and used for control by optical methods 
(so-called Sagnac encoders). 

For the computation of the result of two consecutive Lorentz transformations the 
product of two 4 x 4 mapices is to be calculated. For each of the 16 matrix elements 
four real multiplications and three real additions occur which means 64 real multiplica- 
tions and 48 real additions. 

In  general, the situation is not at all better for quaternions. According to the rule 
in (2.3), the product of two complex quaternions consists of the components 

(AoI+A,K’)(BoI+B,K’) (AoBo-A,Bs)I + (A& + BOA, + E,,,,A.B,)K’ (4.1) 

which means four complex product and three complex additions in the scalar a m -  
ponent and 1 + 1 + 2 = 4 complex multiplications with three complex additions for each 
of the three ‘space’ components. The sum is 16 complex multiplciations and 12 complex 
additions. Taking into account the real and imaginary parts, each complex multiplica- 
tion means four real multiplications and two real additions, therefore in the general 
case 64 real multiplications and 56 real additions are necessary when quaternions are 
used. 

However, the situation is very much better in the case of the 0(3 )+  subgroup. 
According to (2.1 1) only real components occur now, and in this case the 16 multiplica- 
tions with the 12 additions afford considerable ease over the 64 muitipiications and 
48 additions. 

5. Connection with spinor representations 

As is well known, a strict connection between spinors and the elements of the Lorentz 
group can be established via elementary considerations as follows. For Lorentz trans- 
formations the vectors of the light cone having x,x’ = 0 are transformed to each other. 
Because each component of such vectors can be so scaled that the result has a space 
component of half length, the most general Lorentz transformation realizes a transfor- 
mation of a 2~ sphere into itself. Furthermore, as a 2~ surface, this ball can be mapped 
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onto the complex plane in different ways, e.g. 

zI = (x,-ix2)/(f-x3) 

z2 = (x, - ix,)/($- x,) 

z3 = (x, - ix3)/(+- x,) 

x,=fiz ,z? - i ) i (z ,z?+ i )  

x, = Re zl/( zlz: + 1) 

x, = -1m zl/( z,zT + 1) 

and 

etc 

and 

2, = ( z 3 - ; ) / ( 2 , + ; )  i3 = (z, - i j / ( Z 2  + i j (5.3) 
where the half length of the space component has been utilized. Regarding 0 ( 3 ) + ,  
each rotation can be obtained as the result of consecutive rotations around the axes 
x,, x, and xI with different angles {q ,  I i = 1,2, 3). In addition, each pure Lorentz boost 
can easily be expressed by rotating a special boost around a given axis. For instance, 
for rotations and boosts around/according to the x, direction zI has a very simple 
transformation as 

z :  =exp(-iq,)z, for rotations 

4 =exp(q)z, for boosts 
(5.4) 

etc. According to (5.3) each element of the Lorentz group can be expressed with the 
transformation law for z ,  having a general fractional form of 

2: = ( ~ z l + P ) / ( P z I  + a )  ( 5 . 5 )  

where the a, p, F, S complexes are not determined unambiguously. Observing that 
resulting coefficients of consecutive fractional transformations can be expressed as 
matrix products with the matrices A, ,  =a, A,, = p, A,, = p and A,, = S it is expedient 
to impose the det A = 1 restriction which makes A unambiguous apart from a +1 factor. 
The unimodular 2 x 2 complex matrices form the Sl(2, C )  group having the same Lie 
algebra as the Lorentz group. The 2~ complex linear vector space on which the Sl(2, C )  
matrices operate is called the space of spinors. According to (5.4) it is easy to see that 
the unitary subgroup of Sl(2, C ) ,  called SU(2). just corresponds to the 0 ( 3 ) +  subgroup 
of the Lorentz group. 

Regarding the restriction of det A = 1, by the use of (5.4) we can observe that spinor 
representations must have a f factor in the exponents of the appropriate matrix elements. 
For the O(3)’ subgroup it has the consequence that rotations with an angle of 27r are 
described by -1  and due to the requirement of continuity the L+ * A  correspondence 
cannot be made unambiguous by dropping ‘one-half’ of the SI(2, C )  group. Therefore, 
rigorously speaking, Sl(2, C )  with spinors do not represent the Lorentz group (it 
represents only its Lie algebra), and thus it should be excluded when constructing 
representations of the Lorentz group. 

However, it is the revelation of quantum physics that the essential symmetry is not 
the Lorentz group but the broader Sl(2, C )  itself. Due to exhaustive theoretical investi- 
gations it has also become clear that the scalar and spinor representations have a 
fundamental significance: each finite-dimensional representation of Sl(2, C )  can be 
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constructed by the use of scalars and direct products of spinor fields. Therefore, 
tensorial representations can also be constructed with spinors and spinors find extensive 
applications in physics, e.g. see [6-81. 

Regarding the connection with quaternions, spinor representations seem to be 
similar to representations given in (2.5) and (2.10), because in both cases 2?r rotations 
are described by the -1 transformation. Furthermore, due to the rule for matrix 
exponentials that 

(5.6) 

to satisfy the det A = 1 restriction, traceless Hermitian generators have to be found to 
represent Sl(2, C). The appropriate linearly independent matrices are Pauli's spin 
matrices {uj,li = 1,2,3] with such a multiplication rule that {uo, - iq}  exactly serves as 
a matrix representation of the multiplication rule for quaternions given in (2.3) (U,, is 
the unit matrix). Another representation can be obtained for Minkowski vectors as 
Hermitian 2 x 2 complex matrices, 

det[exp(rM)] = exp(t Tr M )  

x := x*u* X' = AXA+ (5.7) 

where xPxp = det(x). This representation is rather similar to the transformation rule 
given in (3.4). 

6. Maxwell's electrodynamics with quaternions 

Here Maxwell's electrodynamics will be discussed with quaternions. In order to avoid 
the use of the p,,, eo constants for vacuum, we use a ccs-like system of units, with 
the c = 1 modification. First we introduce the Grad 'gradient' and r 'potential' quater- 
nions as 

Grad,,,:= d , I  +iK"J, r,,, := @I + iK'"A,. (6.1) 

The d ,  symbol stands for the partial time derivative, while a, ( m  = 1,2,3)  correspond 
to 'space derivatives'. The  grad,.,^,.. product has the following components: 

GradcJcon = (a,@+div A ) l -  (rot A)&"'+ (~ ,A+grad  a), iK" 

= Gauge 1 - B,K - E, iK = Gauge I + F,,,,,,. . (6.2) 
Equation (6.2) consists of the invariant scalar 'Gauge' and the quaternion representation 
of the skew-symmetric field tensor. In similar way we can see that the 

Grad,,.Grad,,,= (-a:+&) 0 (6.3) 
product yields the pure relativistic scalar &Atembertian operator 0. Let us now make 
use of the associativity of the Grad...Grad...~... product, which transforms as a vector. 
We get 

(6.4) = Grad,,.Gauge + Grad,,,F,,,,,,. . 
According to Maxwell's usual equations we obtain 

Gra~con~cov ,con  = -477Jco, (6.5) 

where J,,=ul+ij,Km is the electric charge and the current density vector. Putting 
(6.5) into (6.4) we obtain the usual wave equations for the potential r. The conservation 
law of electric charge is derived by multiplying both sides of (6.5) by Grad,,,, and 
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observing that on the left-hand side we have the term OF,,,,c,,, the scalar part of 
which is zero. All these lead to the continuity equation of the electric charge: 

Grad,.,J,,. = 0. (6.6) 

To obtain the conservation law for the energy-momentum let us consider the real 
scalar and the imaginary 'space' complex parts of the -4rFc,,,c,,Jc., product! I t  is 

4 r ( E j ) l - 4 r i ( E u - B x  j ) , , ,Km (6.7) 

where it is easy to recognize the power and force density vector of the field-charge 
interaction, respectively: 

4 r ( E j ) I  - 4 r I W v  - B xi)&"' = F,, ,,,. crad,,,F,,, .... 
= -[a,f(E'+ B') + div(E x B)]I 

+[a,@ x B )  + B  x rot B -  B div B+E x rot E - E  div E],iK". (6.8) 

Taking into account that E ~ ~ E ~ ~ ~  = Sj& - Sj,Sk,, we have 

B x rot B - B  div B +  E x rot E -E div E = div[f(E2+B2) - B . B -  E.E]:= div 4 r T .  

where T is the Maxwellian momentum density tensor. Therefore the components of 
(6.8) contain the energy density U := ; (E2+  B 2 ) / 4 r ,  the energy current density vector 
S : =  E x B / 4 m  (which is equal to the momentum density vector), and the Maxwellian 
momentum density tensor T. 

Now the whole physical interpretation is as follows. The equation of the real parts 
give 

4r(Ej)=-[d,f(E2+B2)+div(E xB) ]  (6.9) 

whichevidentlyistheequationofcontinuityofthefieldenergydensity (l /8r)(E2+B2),  
the sources and sinks are represented by the Poynting vector ( 1 / 4 r )  ( E x  B )  and the 
Joule heat production by Ej, The equation between the imaginary parts leads to 

E u + j x B  = -(1/4r)[a,(E x B)+divT} (6.10) 

telling us that the force acting on the charge density U and current density j comes 
from the change in time of the momentum density of the electromagnetic field and 
the divergence of the Maxwellian stresses. 

As we noted in section 3, it is not possible to represent the 10 independent 
components of a general symmetric tensor by the use of eight independent quaternion 
coefficients. The relativistic energy and momentum density tensor T,, is symmetric, 
but it can be completely constructed out of the six independent components of E and 
B. Thereofre the relativistically covariant expression &,Tap has a quaternion representa- 
tion. The relativistically covariant quaternion product 

F,,,,~,,F,,,,,,,=(E2--B2)+i2(EB) (6.11) 

corresponds to the two relativistic scalar invariants of the electromagnetic field (e.g. 
[9]). Though the special product 

fFcov.c&on,co~= -uI+i (E  x B I A S  = - ~ ~ c o n , c ~ v ~ c o v , ~ o n  (6.12) 

does not tranform as a vector (the inner exp(-fsr*) exp(fsr) products do not provide 
the unit quaternion I in a general case in the appropriate equations similar to (3.7)). 
it is also worthy of note. I t  represents the last column (and last row) of Tap. 
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7. Extension to magnetic monopoles 

Now we consider the case in which div B # O! In the most general case the r-potential 
can be written as 

(7. I ) r,,, = (-@+i+)I +iA,Km + a,K" = r ~ o v - i r c o v .  M 

The relativistically covariant Grad,,J,,, product yields the relations 

gauge=a,O+div A-i(a,++diva) 

E = -grad @ -J,A+rot IJ 

B=rotA+a,a+grad+ 

- B,K - E, iK = F,,,,,,. . 

(7.2) 

That is to say the electric charge density uE:= div E / 4 v  remains unchanged, while a 
non-zero 'magnetic charge density', 

uM := div B/47r = (a, div a +div grad +)/47r 

Grad...Fc...c.. = -47rJcOv (7.4) 

(7.3) 

appears. The relativistic Maxwell equations 

now have the following form: 

J,,,:= ( - u E K o + i j ~ K - ) + i ( - u M K o + i j ~ K , )  

div E = 4 7 "  div B = 4ruM (7.5) 

a,E-rot B=-4vjE -(a,B+rotE)=47rj'. 

Here J , J denote the electric and magnetic current density vectors, respectively. 
Conservation laws for the electric and magnetic charges can easily be obtained in the 
same way as for div B = 0: the repsective equations of the real and the imaginary 
components of the scalar part of GradcoJcov are valid for the electric and the magnetic 
charges in turn. In order to maintain relativistic covariance we can consider the 
appropriate components of the F ~ ~ , , c , , J ~ o v  product. While the quantities U, S and T 
remain unchanged, new quantities have to appear. Namely, the force components 
u M B + E x j M  and the energy density BjM in the field-charge (current) interaction. 

.E .M 

8. Conclusions 

The given representations have the following advantages in contrast to the usual 4 x  4 
matrix description: 

(i) Even in the most general case, numerical evaluation of the matrix exponential 
series can be substituted by computation of simple complex functions as cosh z, sinh z 
and z"'. This method has similar advantages in  relativistic physics as quaternion 
representation for an arbitrary 0(3)+ rotation in robotics [4,5]. 

(ii) The proposed method is proven to be a very concise and powerful algebraic 
tool to formulate each basic and deduced equation in Maxwell's relativistic electro- 
dynamics. 
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(iii) It serves as a natural way to formulate relativistic electrodynamics in the case 
of existence of magnetic monopoles by suggesting appropriate potentials to deduce 
the magnetic field quantity B. Furthermore, it gives expressions of the energy and force 
density terms to describe the interaction between magnetic monopoles and the elec- 
tromagnetic field. The formalism makes it also possible to derive the conservation law 
for the magnetic charge. 

The basic disadvantage of the method is that there is no algebraic way to formulate 
a general symmetric tensor by the use of quatemions. As we have pointed out, it is 
not a serious obstacle in relativistic electrodynamics. 
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